Shopify to BigQuery

This page provides you with instructions on how to extract data from Shopify and load it into Google BigQuery. (If this manual process sounds onerous, check out Stitch, which can do all the heavy lifting for you in just a few clicks.)

What is Shopify?

Shopify is an ecommerce platform for online and retail point-of-sale systems. It lets businesses set up and manage online stores, accept credit card payments, and track and respond to orders.

What is Google BigQuery?

Google BigQuery is a data warehouse that delivers super-fast results from SQL queries, which it accomplishes using a powerful engine dubbed Dremel. With BigQuery, there's no spinning up (and down) clusters of machines as you work with your data. With that said, it's clear why some claim that BigQuery prioritizes querying over administration. It's super fast, and that's the reason why most folks use it.

Getting data out of Shopify

The first step to getting Shopify data into into your data warehouse is pulling that data off of Shopify's servers using either the Shopify REST API or webhooks. We'll focus on the API here because it allows you to retrieve all of your historical data rather than just new real-time data.

Shopify's API offers numerous endpoints that can provide information on transactions, customers, refunds, and more. Using methods outlined in the API documentation, you can retrieve the data you need. For example, to get a list of all transactions for a given ID, you could call GET /admin/orders/#[id]/transactions.json.

Sample Shopify data

The Shopify API returns JSON-formatted data. Here's an example of the kind of response you might see when querying the transactions endpoint.

{
  "transactions": [
    {
      "id": 179259969,
      "order_id": 450789469,
      "kind": "refund",
      "gateway": "bogus",
      "message": null,
      "created_at": "2017-08-05T12:59:12-04:00",
      "test": false,
      "authorization": "authorization-key",
      "status": "success",
      "amount": "209.00",
      "currency": "USD",
      "location_id": null,
      "user_id": null,
      "parent_id": null,
      "device_id": null,
      "receipt": {},
      "error_code": null,
      "source_name": "web"
    },
    {
      "id": 389404469,
      "order_id": 450789469,
      "kind": "authorization",
      "gateway": "bogus",
      "message": null,
      "created_at": "2017-08-01T11:57:11-04:00",
      "test": false,
      "authorization": "authorization-key",
      "status": "success",
      "amount": "409.94",
      "currency": "USD",
      "location_id": null,
      "user_id": null,
      "parent_id": null,
      "device_id": null,
      "receipt": {
        "testcase": true,
        "authorization": "123456"
      },
      "error_code": null,
      "source_name": "web",
      "payment_details": {
        "credit_card_bin": null,
        "avs_result_code": null,
        "cvv_result_code": null,
        "credit_card_number": "•••• •••• •••• 4242",
        "credit_card_company": "Visa"
      }
    },
    {
      "id": 801038806,
      "order_id": 450789469,
      "kind": "capture",
      "gateway": "bogus",
      "message": null,
      "created_at": "2017-08-05T10:22:51-04:00",
      "test": false,
      "authorization": "authorization-key",
      "status": "success",
      "amount": "250.94",
      "currency": "USD",
      "location_id": null,
      "user_id": null,
      "parent_id": null,
      "device_id": null,
      "receipt": {},
      "error_code": null,
      "source_name": "web"
    }
  ]
}

Loading data into Google BigQuery

Google Cloud Platform offers a helpful guide for loading data into BigQuery. You can use the bq command-line tool to upload the files to your datasets, adding schema and data type information along the way. The bq load command is the workhorse here. You can find its syntax in the bq command-line tool quickstart guide. Iterate through this process as many times as it takes to load all of your tables into BigQuery.

Keeping Shopify data up to date

So, now what? You've built a script that pulls data from Shopify and loads it into your data warehouse, but what happens tomorrow when you have new transactions?

The key is to build your script in such a way that it can identify incremental updates to your data. Thankfully, Shopify's API results include fields like created_at that allow you to identify records that are new since your last update (or since the newest record you've copied). Once you've take new data into account, you can set your script up as a cron job or continuous loop to keep pulling down new data as it appears.

Other data warehouse options

BigQuery is great, but sometimes you need to optimize for different things when you're choosing a data warehouse. Some folks choose to go with Amazon Redshift, PostgreSQL, or Snowflake, which are RDBMSes that use similar SQL syntax, or Panoply, which works with Redshift instances. If you're interested in seeing the relevant steps for loading data into one of these platforms, check out To Redshift, To Postgres, To Snowflake, and To Panoply.

Easier and faster alternatives

If all this sounds a bit overwhelming, don’t be alarmed. If you have all the skills necessary to go through this process, chances are building and maintaining a script like this isn’t a very high-leverage use of your time.

Thankfully, products like Stitch were built to solve this problem automatically. With just a few clicks, Stitch starts extracting your Shopify data via the API, structuring it in a way that is optimized for analysis, and inserting that data into your Google BigQuery data warehouse.